More Accurate Predictions of Protein-Ligand Affinities in Pharmaceutical Research ?

Michael Brunsteiner & Nicolas Foloppe

What we want ...

- assist lead optimization
- predict rel. affinities in congeneric series
- performance: 10s of compounds in days
- accuracy: one order/magnitude (K_d)

What we want ...

- assist lead optimization
- predict rel. affinities in congeneric series
- performance: 10s of compounds in days
- accuracy: one order/magnitude (K_d)

$$\begin{split} \mathsf{RL}_{i} &\rightleftharpoons \mathsf{R} + \mathsf{L}_{i} \quad \mathsf{K}_{d} = \frac{[\mathrm{R}][\mathrm{L}_{i}]}{[\mathrm{RL}_{i}]} \\ \Delta(\Delta G^{\circ}) = -\mathsf{RT} \, \mathsf{ln}(\,\,\mathsf{K}_{d}^{1} \,\,/\,\,\mathsf{K}_{d}^{2} \,\,) \approx 1.4 \,\,\mathsf{kcal/mol} \end{split}$$

What we did ...

- Test free energy methodologies (MM/PBSA, LIE, TI)
- Use a large pharmaceutically relevant test set
- Good assay data + crystallographic support

The Test Case — Hsp90

- emerging oncology target
- structural data for ALL protein ligand complexes (Res.<2.5 Å)
- accurate binding data
- $(\pm 0.34 \text{ kcal/mol})$

The Test Case — Hsp90

- emerging oncology target
- structural data for ALL protein ligand complexes (Res.<2.5 Å)
- accurate binding data
- $(\pm 0.34 \text{ kcal/mol})$

real life example ...

- water mediating ligand/receptor interactions
- flexible protein (3 known conformations)

Ligands: 3 Congeneric Series

curated ligand test sets:

ID	chemistry	<pre># of cmpds. (charged)</pre>	affinity range $[\log_{10}(IC_{50})]$	Conf.	example
А	Resorcinol	32 (16)	5.5	С	
В	PU3	17 (0)	3.2	Н	NH ₂ N N N N N N N N N N N O O N N N N O
С		28 (7)	3.0	Н	

Ligand Preperation

- tautomers: assigned based on structures
- partial charges: ESP, HF 6-31G*
- FF parameters: Momany-Rone FF, CHARMm

Methods Considered

physics based scoring

- Mol. Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)
- Linear Interation Energies (LIE)

Methods Considered

physics based scoring

- Mol. Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)
- Linear Interation Energies (LIE)

rigorous (preliminary)

• Thermodynamic Integration (TI),

MM/PBSA

- direct interaction + desolvation + entropy
- continuum solvent: $G_{solv} \approx G_{PB} + \gamma SA$
- entropy: harmonic approximation ... difficult.

MM/PBSA, The Protocol

MM/PBSA, The Protocol

MM force field:

protein: **CHARMM22** or **Momany-Rone** Minimization:

protein non-H atoms: **fixed** or **relaxed** PB calculation:

CHARMm PBEQ, conservative param., $\epsilon_{slte} = 1 - 3$ Born radii: LJ-radii vs PARSE vs Nina *et al.*

non-polar solvation

 $\gamma =$ 0.0 - 0.05 kcal/mol/Å 2

EM (SPE) vs MD sampling

MM/PBSA, Compound Series A

single point energies -

calculated vs experiment

radii: PARSE (P) vs Nina *et al* (N) protein FF: CHARMM22 (C) vs Momany (M) ϵ_{solute} : 1 vs 3

MM/PBSA, Compound Series A

MM/PBSA, Compound Series A

- MM/PBSA: best $r^2 = 0.63$ (Nina *et al* radii, Momany-FF, $\epsilon = 3$)
- better correlation with increasing $\gamma \leftarrow r^2(\Delta SA) = 0.73$!
- $r^2(\epsilon = 3) > r^2(\epsilon = 1)$
- Born radii from Nina et al. perform better than PARSE radii

MM/PBSA, Compound Series B

single point energies

calculated vs experiment

radii: PARSE (P) vs Nina *et al* (N) protein FF: CHARMM22 (C) vs Momany (M) ϵ_{solute} : 1 vs 3

MM/PBSA, Compound Series B

MM/PBSA, Compound Series B

- best: $r^2=0.38$ (Parse radii, CHARMM22-FF, $\epsilon = 1$)
- better correlation with increasing γ , $r^2(SA) = 0.22$ (C), 0.34 (M)
- $r^2(\epsilon = 1) > r^2(\epsilon = 3)$
- PARSE radii perform better

MM/PBSA, Compound Series C

single point energies

calculated vs experiment

radii: PARSE (P) vs Nina *et al* (N) protein FF: CHARMM22 (C) vs Momany (M) ϵ_{solute} : 1 vs 3

MM/PBSA, Compound Series C

MM/PBSA, Compound Series C

- best: $r^2=0.12$ (N-radii, C-FF, $\epsilon = 3$)
- virtually NO corrlation

Setup:

- water droplet centered on ligand
- spherical boundary potential
- MD, 300 K, 5 nano-seconds (max)
- FF: CHARMM22, radii: Nina et al.
- $\gamma = 0.033 \text{ kcal/mol/Å}^2$

Setup:

- water droplet centered on ligand
- spherical boundary potential
- MD, 300 K, 5 nano-seconds (max)
- FF: CHARMM22, radii: Nina et al.
- $\gamma = 0.033 \text{ kcal/mol/Å}^2$

Setup:

- water droplet centered on ligand
- spherical boundary potential
- MD, 300 K, 5 nano-seconds (max)
- FF: CHARMM22, radii: Nina et al.
- $\gamma = 0.033 \text{ kcal/mol/} \text{Å}^2$

ABCMM/PBSA0.520.240.01MD/PBSA**0.580.250.07**

Setup:

- water droplet centered on ligand
- spherical boundary potential
- MD, 300 K, 5 nano-seconds (max)
- FF: CHARMM22, radii: Nina et al.
- $\gamma = 0.033 \text{ kcal/mol/Å}^2$

ABCMM/PBSA0.520.240.01MD/PBSA**0.580.250.07**

Sampling improves results marginally.

Linear Interaction Energies

$\Delta \mathsf{G} \approx \alpha \Delta U_{vdW}^{L} + \beta \Delta U_{el}^{L} (+\gamma)$

Linear Interaction Energies

$\Delta \mathsf{G} \approx \alpha \Delta U_{vdW}^{L} + \beta \Delta U_{el}^{L} (+\gamma)$

- explicit solvent
- ligand focussed
- empirical factors (weights)

LIE - Absolute Energies

 $\Delta G \propto \alpha \Delta U_{vdW} + \beta \Delta U_{el} + \gamma \dots fit \alpha, \beta, \gamma$

cmpd.	lpha	eta	γ	r^2	MUE
А	0.16	0.00	-0.76	0.73	0.67
В	0.13	0.00	-1.42	0.17	0.97
С	0.14	0.00	-2.87	0.03	1.01

- trends similar to MM/PBSA, good r^2 for A
- electrostatics does not contribute to specificity

Resolution

	А	В	С
MM/PBSA	0.52	0.24	0.01
MD/PBSA	0.58	0.25	0.07
LIE ($\beta = 0$)	0.73	0.17	0.03

Resolution

- Affinity differences smaller than 3 orders of magnitude can NOT be resolved in this case.
- Protein conformation may play a role.

Thermodynamic Integration

Thermodynamic Integration

- How much CPU-time does it require ?
- Protocol, long range interactions, system size, etc ?

full PBC + counter-ions

Thermodynamic Integration - Accuracy

- 2 compound pairs from series C:
- 1 charged, 1 neutral

```
small change: S \rightarrow O IC<sub>50</sub> \searrow fact. 100
```

Thermodynamic Integration - Accuracy

2 compound pairs from series C:		$\Delta\Delta { m G}$ case 1 neutral	[kcal/mol] case 2 charged
I Chargeu, I neutrai	xptl	2.3	2.3
small change: $S \rightarrow O$ IC 50 \searrow fact 100	SBC PBC/ctof PBC/PME	2.3 2.2 ± 0.03	$\begin{array}{r} 4.5 \\ 4.1 \\ 2.9 \pm 0.04 \end{array}$
$1 \sim 30$ λ 1001 100			

Thermodynamic Integration - Accuracy

	$\Delta\Delta { m G}$ case 1 neutral	[kcal/mol] case 2 charged
xptl	2.3	2.3
SBC PBC/ctof PBC/PME	2.3 2.2 ± 0.03	$4.5 \\ 4.1 \\ 2.9 \pm 0.04$
	xptl SBC PBC/ctof PBC/PME	$\begin{vmatrix} \Delta \Delta G \\ case 1 \\ neutral \end{vmatrix}$ $xptl \qquad 2.3$ $SBC \qquad 2.3$ $PBC/ctof \qquad 2.2 \pm 0.03$

- error < 1 kcal/mol in two cases
- full PBC + Ewald gives best result
- required CPU-time reasonable
- results converge fast with PBC/Ewald

• Hsp90 ligand binding specifity: dominated by vdW interactions.

- Hsp90 ligand binding specifity: dominated by vdW interactions.
- MM/PBSA: optimal protocol varies with the ligand series / protein conformation

- Hsp90 ligand binding specifity: dominated by vdW interactions.
- MM/PBSA: optimal protocol varies with the ligand series / protein conformation
- MM/PBSA or LIE reliably resolve only large differences in binding affinities in this case.

- Hsp90 ligand binding specifity: dominated by vdW interactions.
- MM/PBSA: optimal protocol varies with the ligand series / protein conformation
- MM/PBSA or LIE reliably resolve only large differences in binding affinities in this case.
- extensive sampling barely improves results.

- Hsp90 ligand binding specifity: dominated by vdW interactions.
- MM/PBSA: optimal protocol varies with the ligand series / protein conformation
- MM/PBSA or LIE reliably resolve only large differences in binding affinities in this case.
- extensive sampling barely improves results.
- TI/FEP: accuracy pprox 1 kcal/mol (preliminary)

- Hsp90 ligand binding specifity: dominated by vdW interactions.
- MM/PBSA: optimal protocol varies with the ligand series / protein conformation
- MM/PBSA or LIE reliably resolve only large differences in binding affinities in this case.
- extensive sampling barely improves results.
- TI/FEP: accuracy pprox 1 kcal/mol (preliminary)
- TI/FEP: required CPU time reasonable usage in lead optimization feasible.

Acknowledgements

Kate Grant (assays) Lisa Fisher, David Robinson (X-ray)

Medicinal chemistry: Paul Brough, Brian Dymock, Martin Drysdale

The modeling team: Xavier Barril, Ijen Chen, Alba Macias, Christine Richardson

and Rod Hubbard